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1. FUNDAMENTAL AND DERIVED UNITS 

1                             Metric English 

Bymooi 

i                    Unit 
i 

Abbrevia- i                  r-„;t 
tioa      ] 

Abbrevia- 
tion 

Length  
Time  
Forco  

I 
I          j meter. .     _       » 

g 

kg 

ft (or mi) 
see (or hr) 
lb 

t             second   _   _     ...         
F         |  weight of 1 kilogram  

second (or hour)  
weight of 1 pound..  __ 

Power      ...         P        1 horsepower (metric)          .;   ._ horsepower  lip 
mph 
fps 

Speed  y        1 fkilometers per hour  
\metcrs por second. _   _. 

kph 
mps 

miles per hour  
feet per second  

2. GENERAL SYMBOLS 

W        Weight=m<7 
g Standard acceleration of gravity=9.80665 m/s5 

or 32.1740 ft/sec* 
W 

m        Mass=— 
<7 

I Moment   of   inertia=wii'.    (Indicate   axis   of 
radius of gyration k by proper subscript.) 

n Coefficient of viscosity 

v Kinematic viscosity 
P Density (mass per unit volume) 
Standard density of dry air, 0.12497 kg-mr'-a3 at 15° C 

and 760 mm; or 0.002378 lb-ft"4 sec3 

Specific  weight  of  "standard"  air,   1.2255  kg/m3 or 
0.07651 lb/cu ft 

3. AERODYNAMIC SYMBOLS 

s Area 

0 
Area of wing 
Gap 

b 

. 1 

Spaa 
Chord 

Aspect ratio, -w 

True air speed 

Dynamic pressure, -^pV3 

Lift, absolute coefficient CL=-^, 

Dram, absolute coefficient CD=—r, 

Profile dratr, absolute coefficient CD = >" ö' "    qti 

Induced drag, absolute coefficient CD = —' 

Parasite drag, absolute coefficient CDt, = —£, 
go 

i„ Anglo of sotting of wings (relative to thrust line) 
t, Angle of stabilizer sotting (relative to thrust 

line) 
Q Resultant moment 
Q Resultant angular velocity 

R Reynolds number, p— where lis a linear dimen- 
ß 

sion (e.g., for an airfoil of ] .0 ft chord, 100 mph, 
standard pressure at 15° C, the corresponding 
Reynolds number is 935,400; or for an airfoil 
of 1.0 m chord, 100 mps, the corresponding 
Reynolds number is 6,865,000) 

Angle of attack 
Anglo of downwash 
Anglo of attack, infinite aspect ratio 
Angle of attack, induced 
Angle of attack, absolute (measured from zero- 

lift position) 
Flight-path angle 

a 
t 

a« 

c 
Cross-wind force, absolute coefficient Cc——& 
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REPORT No. 908 

STABILITY DERIVATIVES OF TRIANGULAR WINGS AT SUPERSONIC SPEEDS 

By HKHHKUT S.   RIBNKK and 1'IIANK  S.   MALVKSTCTO, Jr. 

SUMMARY 

The analysis of the stability dtrivatives »/' low-aspect-ratio 
triangular wings at subsonic and supersonic speeds, given in 
XACA TX Xo. l.'iJS, is extended to apply to triangular wings 
having large vertex angles and traveling at supersonic speeds. 
The lift, rolling moment due to sideslip, and damping in roll, 
and pitch for this more general case have been treated elsewhere, 
on the basis of the theory of small disturbances.    The surface 
potentials for angle of attack and rolling taken therefrom are 
used   to   obtain   the   several   side-force   and   yawing-moment 
derivatives that depend on leading-edge suction, and a tentative 
value  for the  rolling  moment due to yawing.     The lift and 
moment due to downward acceleration are obtained on the basis 
of an -unpublished   unsteady-flow  solution.    All  the  known 
stability derivatives of the triangular wing at supersonic speeds, 
regardless   of  source,   are   summarized for  convenience and 
presented with respect to both body axes and stability axes.    The 
results are limited to Mach numbers for which the triangular 
wing is contained within the Mach cone from its vertex.    The 
spanwise variation of Mach number in the case of yawing is 
neglected, although the effect must be of importance. 

)/- , i      ,-7/i    > i-^ö'rl   ) 
INTRODUCTION (/v. 

An earlier investigation (reference 1) has provided theoreti- 
cal stability derivatives of low-aspect-ratio wings of triangu- 
lar plan form at subsonic and supersonic speeds. The 
restriction to low aspect ratio was a consequence of the 
limitations of the theory. Several investigators have since 
obtained pressure distributions for angle of attack, rolling, 
pitching, and sideslip at supersonic speeds (references 2 to 6 
and unpublished analyses), without restriction to low aspect 
ratio. Those derivations have employed variants of the 
linear theory of supersonic flow and have, in fact, constituted 
important steps in the development of the theory. 

If the rotations are taken about the vertex, the pressure 
distribution for each motion in the more general case is found 
to have the same shape as the corresponding low-aspect-ratio 
approximation, so long as the triangular wing is contained 
within the Mach cone from the vertex. The magnitudes 
differ by factors which are functions solely of the ratio of the 
tangent of the semivertex angle of the triangle to the tangent 
of the Mach angle. The same similarity exists between the 
distributions of surface potential. It is thus relatively simple 
to extend most of the derivations of reference 1 to remove 
the restriction of low aspect ratio for supersonic speeds. Such 
an extension is made in the present report. 

The lift-curve slope, the damping in roll and pitch, and (in 
effect) the rolling moment due to sideslip have been evaluated 

M37S.1—M 

in references 2 to <>, so that the principal contributions of the 
present report arc the normal acceleration derivatives ob- 
tained on the basis of an unpublished unsteady-flow solution 
due to Clifford S. Gardner, tin» several side-force and yawing- 
moment derivatives, and a tentative value of the rolling 
moment due to yawing. All the known stability derivatives 
of the triangular wing at supersonic speeds, regardless of 
source, are collected herein for convenience and presented 
with respect to both body axes and stability axes. Wings 
with dihedral are not treated (although they were included 
in reference 1), and the results are limited to Mach numbers 
for which the wing is contained within the Mach cone from its 
vertex. 

SYMBOLS 

*, y, z 
t 
U, V, w 

p, 1,r 

rectangular coordinates (lig. 1) 
time 
incremental flight velocities along x-, y-, and 

2-axes, respectively (fig. 2); induced flow veloc- 
ities along x-, y-, and s-axes of figure 1, 
respectively 

angular velocities about x-, y-, and j-axes, respec- 
tively (fig. 2) 

KifM'HE I. ■ Axes and notation used in analysis. 

V 
« 
M 
M' 

B 
a 

ß 
t 

M 

AP 

P 
a 
b 

flight speed 
speed of sound in free stream 
stream Mach number (V/ä) 
component of the Mach number normal to win}; 

leading edge 
MV    \ 

i +rv 
cotangent of Mach angle (\i\T-—i) 
angle of attack (Flight w;/l-r) 
angle of sideslip (Flight r/V) 
semivertex angle of triangle 

Mach angle (cot-1 \'M'2— l) 
local pressure difference between lower and upper 

surfaces  of  airfoil,  positive  in  sense  of a  lift 
density of air 
semiwidth of triangle at distance x from vertex 
span (base of triangle) 

1 
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root chord (height of triangle) 
mean aeiodynamic chord 

/'_     ° i'"'"2 ''   \ ( f= " (Local chord)-'(///-=., c J 

,       ,        i a    da    A     b\ 

aspect ratio (2blc) 

area of triangle ( ^ be J 

velocity potential 
value of <t> for unit pitching velocity ahout (/-axis 
value of 4> for unit angle of attack 

r 
A 

S 

<t> 

x 

, = «■««-?/ 

' a 

k=\\~iric~2 

E'(BC)    complete elliptic integral of the second kind with 

modulus/:    (       yl—k-shvzdz 

F'(BC)    complete elliptic integral of the first kind with 

adulus k    (      -■—,T~!= ) 
\ Jo -y 1 —k- stir 2/ 

l—B2C2 

G(BC) = (1 _ 2B2C2) E' (BC) +B2C!F'jBC) 
H(BC)=1G(BC)-2E"(BC) 

2(i_ B*C2)  
I{BC) = ^B^YE^WCy^B^^F^BC) 

J(BC)=E"(BC)I(BC) TJI-B
2
C'

2 

K constant defined in equation (Iß) 
yawing moment 
lateral force 
suction force per unit length of edge 

Lift   \ 

Y 
1 

Cm 

Cl 

c„ 

Cy 

cnn 

BN 

lift coefficient 

pitch ing-moment coefficient, 
'Pitching moment 

PV
nSc 

rolling-moment coefficient 
'Rolling momcntN 

PV
2Sb 

yawning-moment coefficient / . 
N 

PV
2Sb 

lateral-force coefficient 
f    Y   \ 

.       /Profile drag\ 
profde drag coefficient /  -:  \ 

\    2^V2S    J 
induced surface velocity normal to wing leading 

edge 

,s- perpendicular distance of point   (s, y)  from wing 
leading edge 

2 
jCB distance of center of gravity forward of " c 

Subscripts: 
R right edge 
L left edge 

When s. y, 2, or t are used as subscripts, the respective 
partial derivative" is indicated.     For example, 

4>xi— bxbt 

Whenever a, a, q, p, ß, and r are used as subscripts, a 
nondimensional derivative is indicated and this derivative 
is the slope through zero.    For example, 

C   = 
bCm 

Cm = 

C = 

/ c 

_ÖV2 
bC, 

2V 

2V 

bC, 

<M) 

C,e=lbßl-,, 

c.= 

A dot above a symbol denotes differentiation with respect 
to time.    All angles are measured in radians. 

ANALYSIS 

SCOPE 

The stability derivatives of triangular wings at supersonic 
speed that have been treated theoretically herein or else- 
where are listed in table I, together with the expressions 
that have been found for them. All the derivations make 
use of body axes. The derivations that follow giv 'he 
values with reference to the principal body axes of fig ;/.•■ 2 

with origin at the aerodynamic center (^c, 0,0 j. Conver- 

sion has been made to the system of stability axes shown in 
2 

figure 3 with origin a distance xcg ahead of  the ^c point. 

Table I comprises parallel columns which present formulas 
relative to both systems. The expressions are limited to 
Mach numbers for which the triangle is contained within 
the Mach cone from its vertex. 
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Iv, Z 

FLU-RE :i. -Wlwitk-s. foiws. and „laments relativ,- In stability axes with oricin at "i- - r.B. 

Principal axes (it Henri' 2 dashed in for comparison. 

DERIVATIVE (';.„ 

The pressure distribution on a thin triangulur wing at an 
angle of attack in a supersonic stream has been obtained in 
references 2 to 4 bv the linearized theory without restric- 
tion on the vertex angle of the triangle. The approximat ion 
originally given for the slender (low-aspect-ratio) triangle 
(reference 7) and used as the basis for reference 1 is found 
to apply to the general case upon division by a constant (an 
elliptic integral) that depends on the ratio of the semivertex 
angle to the Mach angle; that is, 

AP  _ iaCa 
(1) 

where E'(BO is the complete elliptic integral of the second 

kind with modulus 

k=%l-B<Ö 

= ^ \^(\P-\)C- 

Tluis. the lift-curve slope for the more general case is the 
value given by references 7 and 1 divided by E'(BC): 

r  —    r^ L°~9E'~t E'(BO 

= ~AE"(liC) (2) 

The surface potential given in equation (3) of reference 1 is 
likewise extended to include nonslender triangles at super- 
sonic speeds upon division by E'ifiC). The revised po- 

tential is 

W>): H=± 

=  ± 

Vaa smjt 
E'jBC) 

Vay<r—^]r 
E'(BC) (:» 

The elliptic integral  E'(BC) depends only on the param- 

eter   BO =tim ' (ratio  of  the   tangent   of   the   semivertex 
tan M 

ans^le of the triangular wing to the tangeni of the Mach 
angle) and is therefore a constant for a given wing at a 
given speed. 

DERIVATIVES Cv C,.„. AND C. 

The derivatives C,„ , C, .and C, are derived in references. 
<j       'i /' 

With respect to the axes of figure 2 

c,„ =-™yauin 
i lb 

C, r^;[iI(BC) 

C,=-*£l(HC) 

(4) 

(5) 

(6) 

where 
\-B-C1 ,_. 

('(BC^ {l-2WO) E'(BC)~B'C-F'(B(<) (" 

II(BC)=:iG(BC)-'2E"(BC) 

■2(l-B-C-) 
I(BC) - (2^W(r-)Er(BC)-B-CiF''(BC) 

(8) 

0) 

and F'(BC) and E'(BC) are the complete elliptic integrals 
of the first and second kinds, respectively, with modulus 

k=^\~-BW. 
DERIVATIVES O.;   AN» C ; 

The derivation of Ct<1 and Cm-t in reference 1 is based on 
the assumption that the steady-state surface potential is not 
altered in the first order by a small normal acceleration. 
This assumption is true for the narrow triangles treated in 
the earlier paper, but it fails for the general triangles treated 
in the present paper. For this more general case the linear- 
ized potential equation for unsteady motion, 

•T 1 (10) 

must be solved, subject to the boundary condition on the 
wing, that is, for z = 0 

<—= —alt 
oz 

(11) 

la an unpublished paper. Mr. Clifford S. Gardner has, in 
effect, shown that a suitable solution is 

1= &++(!-V&)x (12) 

where i is the steady-state potential corresponding to a unit 
pitching velocity about the //-axis and x is the steady-state 
potential corresponding to unit angle of attack. That equa- 
tion (12) is a solution can be verified by direct substitution 
into equations (10) and (11). Thus. Gardner has shown that 
the time-dependent potential for an angle of attack at may be 
compounded of two time-free or steady-state potentials, one for 
a constant angle of attack and the other for steady pitching. 
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The lift distribution at time / = <1 for the angle of attack 
'xt is obtained from the surface potential bv 

AP = 2p(V<t>I
Jr<pl)t^ 

--•2P\ p V a i (']r.   +r~ 
Al2x 
YE- XT~ 

X 

VB -) 

^[.imn^-^APu -2PX] (13) 

where 
(M^^i lift distribution for  unit  pitching  velocity  about 

y-axis 
(&P)„si lift distribution for unit angle of attack 
The choice of time / = () eliminates the lift due to angle of 
attack and leaves only the increment due to time rate of 
change of angle of attack. 

Integration to obtain the lift and moment and reduction 
to coefficient form yields 

C, 
M: ■2AP n 8 

i ^„ + "ni" ^''"n + 'RäVF *</s (14) 

Cm 

&SFJ J * {v) dS (15) 

where the integrations are carried over the wing plan form. 
For the  triangular wing with y-axis taken tlirough the 

aerodynamic center, r. c from the apex, the derivative Cm<s is 

zero. The derivatives Cm and (7tj for this case are evaluated 

in equations (4) and (5), respectively. The potential x is 
obtained by setting a=l in equation (3), and the pressure 

coefficient/. \      is   obtained    bv   setting   <*=1   and 

a — C(~ c+x) in equation (1). Substitution, integration, 

and simplification yields the results 

■AE"(BO-M2H(BC) 

Cm.= 

2 J/--1 

TrAE"(BQ-.\Pri(BC) 
10 M2-f 

DERIVATIVE C.-s 

(10) 

(17) 

The pressure distribution over a thin triangular wing in 
yaw (sideslip) at an angle of attack at supersonic speed has 
been obtained in reference <> and unpublished work.    If the 

angle of yaw is assumed to be small \ß<^\[)-  tu<' rolling- 

moment coefficient can be expressed in the approximate form 

■•> 

Thus, the derivative with respect to 3 is 

C,^-      E"iBCi IS) 

An alternative derivation based on the surface potential, 
equation (3), for the unyawed wing will be given because 
the method provides the starting point for a derivation of 
C,r, CYJ, C„ß, Cyr, and ("„.. 

The potential for the disturbance velocity may be ex- 
pressed relative to axes alined with the stream (wind axes) 
or with respect to axes that yaw with the body (body axes). 

For small angles of yaw (/i< \j), the linearized equation for 

the potential has the same form relative to either system of 
axes. The potential is determined by the normal velocity 
of points of the surface and by the orientation of the surface; 
for negligible thickness, this normal velocity is just aV for all 
angles of yaw. The potential expressed relative to wind 
axes thus varies as the wing yaws relative to these axes. 
The potential expressed relative to body axes is constant for 
small yaw because the orientation of the wing relative to the 
axes does not change. 

For wind axes, Bernoulli's law has the form 

A/J=2pl 
, d<t> 

dx 

and the change in the pressure distribution with yaw results 
from the change in the potential function with yaw. For 
body axes with small yaw, Bernoulli's law has the approxi- 
mate form 

"-»■(M-%) (19) 

and the change in pressure distribution with yaw results 

from the term — ß ..-- since <6 does not change. 
dy 

In reference 1 in the section entitled "Derivative C,ä," the 

derivation  employs  body axes  and  equation   (19)  of  the 
present paper.    The surface potential used (equation (3) of 
reference 1) is the approximation for narrow vertex angle. 
Equation (3) herein for a general vertex angle may be used 
instead.    Equation   (3)   herein   differs  only   in   the   factor 
l/E'(BC), whence the earlier expression for C,s (equation 

(19), reference 1, with F = 0°) acquires this factor to agree 
with equation (18). 

DERIVATIVE C:r 

The foregoing discussion of the triangular wing in yaw 
(sideslip) may be extended to provide a preliminary treat- 
ment of the case of a small angular velocity of yaw /•. The 
corresponding extension for narrow vertex angle is made in 
reference 1. The treatment is generalized to an arbitrary 
vortex angle for supersonic speeds, as before, by using 
equation (3) herein for the surface potential. Two changes 
then appear in the pressure equation, equation (20), of 
reference 1. The right-hand side is divided by E'(BC), and 
the term u< '=xC- must be retained since ('- is no longer small 
compared with unity (('= Tangent of semivertex angle). 
With these changes, the derivation leads to 

.1 r''- = ™(.ü + ;n)/-"!/'n (20) 



In the derivation of equation (20), the spamvise variation 
in local Mach number caused by yawing is «ot taken into 
account although the variation in forward speed is taken into 
account. The surface potential th.it is used, equation (3 , 
satisfies the lineanzed equation for a How of uniform Mach 
„umber. This potential is inadequate to describe the 
rompressibility .'fleets associated w.th a spamvise variation 

of Mach number. . . 
Thus, consider a high-aspect-ratio rectangular wing with 

tips cut off alons the Mach lines. In straight flight the 
Ackeret theory can be applied. The pressure d.fFerence is 

«riven bv 
""  (2D 

L1TY DERIVATIVES OF TRIAXCULAK WINGS AT SUPERSONIC SPEEDS 

'~>pM- (Speed of sound!: 

In vawing flight the forward velocity varies linear y along 
the'span. If the rate of yaw is made sufficiently low-, the 
variation from wing tip to wing tip can be made so small that 
the flow is still nearly two-dimensional at any point. 11ms 
the Ackeret theory is still applicable if the local Mach number 
is used at each spamvise station. 

The variation in pressure with local Mach number can be 
obtained from equation (21). As the Mach number is 
increased, the pressure decreases from infinity at A/= to a 
minimum at M=\A and then increases again. Thus below 
Mach number 1.4 the faster moving sections of the yawing 
wing have the lesser lift. This result is contrary to subsonic 
behavior and to that which would be predicted if the span- 
wise variation of Mach number were neglected. Thus the 
spamvise variation of the compressibility effect causes a 
reversal of the sign of the rolling moment due to yawing for 
rectangular wings at Mach numbers between 1 and 1.4, and 
at M= 1.4 the moment is zero. (This result refers to yawing 
in a system of stability axes, fig. 3. For body axes, fig. 2, 
the effect is similar but the reversal extends to M = «.) 

A vawing triangular wing may be expected likewise to show 
an effect of the spamvise variation in Mach number. If the 
triangle is contained within the Mach cone from its vertex 
(the only case considered in this report), however, the effect 
should be verv much less than for the rectangular wing. In 
particular, where the predicted effect for the rectangular w.ng 
is a reversal of the sign of the rolling moment, the effect for 
the triangular wing is expected to be merely a change m the 
magnitude.. A reversal in sign is not expected until the edges 
of the triangle protrude from the Mach cone 11ns behavior 
is inferred from the fact that the analyses of references 2 to 
7 show manv subsonic characteristics for triangles within the 
Mach cone' and a marked change in characteristics for 
triangles with side edges outside the Mach cone. 

DERIVATIVES ( vp AND C.p 

Extensive changes are necessary to -enerali/.e the treat- 
ment „f (\. and C.p in reference 1 to arbitrary vertex angles 

for supersonic speeds;  therefor.-,  the revised derivation is 

siiven in detail. . 
'   The derivatives Cyp and <\ relative to body axes foi a 

very  thin  triangular wing without  dihedral ar.se  entirely 

from suction on the wing side edges.    Consider u condition 
for which the induced velocity normal to the edge is of the 

torm 

<\v=± 
A" (22) 
\ * 

in the immediate neighborhood of the edge, where « is the 
perpendicular distance from the edge and K is a constant. 
Reference 3 points out that for such a flow there is a suction 

force per unit length of edge, 

/WpÄ-Vl-AP (23) 

so long as the triangular wing does not protrude from the 
Mach cone from its vertex. In equation (2:5), M' is the 
Mach number of the component of the_stream flow normal 

to the leading edge. The radical ^\-M" is the Prandtl- 
Glauert compressibility factor for the normal component of 
flow. Equation (23) is limited to real values of the radical 
by the condition expressed for the Mach cone. 

" For the delta wing in rolling motion the induced velocity 
component u has been obtained in reference 5 as 

Ul= ±- 
vyC2 

i: 
J(BQ 

Angle of attack gives the additional contribution (reference 2) 

«2= ± 
aVC2 

E'{BQ^C>-(^) 

The total induced velocity on the upper surface is thus the 
sum of «i and u2 with the plus sign 

wbW'H V<R0 
Very near the side edge this velocity is approximately 

(73/2 r    aV       pCx I(BC)1 

where the plus sign refers to the right edge and the minus 

sign to the left edge. 

If a similar calculation is made for v=^y it is found that 

as the side edge is approached the resultant induced velocity 

y¥+? becomes normal to the edge. Thus the normal 

velocity near the edge is 

r.v = —y,   -« 
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The perpendicular distance of point   (x,  //)   from   I lie   side 

cilire is 

<(<■-■$ 

The  resultant   induced   velocity  very  near  the  edge  may 
iherefore he expressed approximately as 

jcüin-      2     J u ■    '   V2J 

which is of the form of equation (22).     The suction force per 
unit length of edge is from e(|tiation (2:5) thus 

■'-•2p(-J  ([/i'(7*OF 4 

-IWT)AllTf )(1   -W (24) 

where the plus sign refers to the right odtrc and the minus 
sign refers to the left edge. The factor N7l-K'J) (1 —M'-) 

can he reduced to A I—IFC'2, where B2 = M': — 1. 
The lateral component of this suction force is given by 

OKY  rnMMITTKK YOU AKHONAl'TICS 

»KRIVATIVKS C,,,  (',.,.  <'>.. AM) (',, 

According to the discussion on i \„ a small angle of yaw 

or sideslip (/j« ,v) does not alter the surface potential (to 

the first order in ß) expressed relative to body axes. Thus, 
the initially symmetric distribution of leading-edge velocity 
persists in sideslip. The symmetry of the leading-edge 
suction is, however, upset by the sideslip because of a com- 
pressibility effect. The quantitative evaluation of the 
change proceeds as follows: 

Equation   (23)   expresses  the  suction  per  unit   length  of 
edge in the form 

For infinitesimal sideslip the constant A', related to the edge 
velocity, is unchanged, but Af, the component Mach number 
perpendicular to the edge, is altered: .1/' increases on the 
right edge and decreases on the left edge. Because of the 
change of M' with sideslip angle ß the edge suction may be 
written, for small values of ß, 

Y= j^ (Ja-JJdx 

*   _ ,  „   I (HO ^l-W 
= -pC-ca\p   —tfpQ — 

The lateral-force coefficient is formed by division by 7, pV2S, 

and the derivative with respect to pb/2V is the stability 
derivative CY.   It is 

Cv 
2TaI{BC)yl-WC:- 

r-~  3   "'""   E'(BC) 
(25) 

The vawing moment of the leading-edge suction about the 
vertex of the triangle is 

A'., — r./. i-//.) *\lJr(71  dixs'l + C1) 

= -4 p( -c'a\p(\ +C ) -—gfQiC)  

The moment about the reference point 

.Y=.Y„ +"j(-r 

("(■,0,0") is 

The yawimr-moment coefficient is formed by division by 

.', pY-Sb, and the derivative with respect to /;6/2l'is the 

stability derivative C„p.    It is 

1    , A\I(BO^\-B!C- 
f 

I 1    , A\l(JUn 
(BC) 

(2(5) 

a A 
J=St-»+ß(w\_0 

(27) 

By differentiation of equation  (23), with K constant and 
Jl/' = .Usin (t±ß), there results 

/-A-**.-(£-&<)„ (28> 
where the upper sign refers to the right edge and the lower 
sign to the left edge. 

The quantity/f).,, is obtained by setting ^ = 0 in equation 
(24): 

fß'O 
irpCxcrV^l-iPC2 

=        2 [K'TlfC)}1 
(29) 

Substitution of equation  (29) in the last  term of equation 
(28) and simplification, with tan t = <\ yields 

J=h-^ß 
TPY-d-xC2M- 

2[E'YBC)VSI-B'C
: 

(30) 

Equation (30) gives the suction per unit length of edge for a 
triangular wing with an angle of sideslip ß. 

For the case of a small angular velocity of yaw r, the edge 
suction may be approximated by 

/-/"+'(£)  
where /,„, is the same as/^„ and is given by equation (29). 

If the center of rotation is at the reference point( - c, 0, 0 \ 

the component Mach number normal to the edges is 

M' = ' = J/[siuc±f.Q c cos t — x sec i )] 
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This value of -V is to he incorporated in equation (2.3) for/ 

before the indicated differentiation ^ can be carried out. 

'Hie final result is 

f=Js-nTr 
(I - c — x sec e ) Tp\'a2fC-M~ 

2[E'(BC)\^].-B-C- 
(31) 

The difference between the suction forces on the right and 
left edges, as determined from equations (30) and (31), has 
been integrated to yield values of side force and yawing 
moment. The procedures, and the subsequent reduction to 
coefficient form, are similar to those leading to equation (25) 
for CY   and to equation (2G) for (.'„,.    The results are 

Cyr-l*>AXPQ{BC) 

Cn=*i a2A2M2Q{BC) 

Cr = ~ a2A2M2Q(BQ 

ra2AP ( 1 ,A9A»\ onn 

(32) 

where 
0(nr)_[E"(BC)Y 

The analysis thus far has been based on potential-flow 
theory. A little consideration will show that the direct 
viscous effect—that is, the skin-friction drag—will have a 
negligible effect on all the stability derivatives studied 
herein except C„ . To this derivative the skin friction will 

add an increment 

AC, '^{G+M
2
) 

as determined in reference 1. 

RESULTS AND DISCUSSION 

The formulas  that have been obtained for the various 
stability derivatives are collected in table I.    Derivatives 
obtained elsewhere are included  for completeness, and the 
source is indicated in each instance.    Expressions are given 
for two systems of coordinate axes.    In the first column are 
shown the derivatives relative to the principal body axes of 

2 
figure 2 with origin a distance 77 c from the vertex of the 

triangle. In the second column are shown the results rela- 
tive to stability axes with origin a distance xcg ahead of the 

f c point.    The  relationship  between the two systems of 

axes is shown in figure 3. Equations for transforming from 
body axes to stability axes are given in reference 8; the shift 
in origin results in additional terms. 

In the transformation of the present results from principal 
body axes to stability axes terms of order A2/H) and the more 
important terms of order a2 are retained (see footnote, table 
I), whereas in reference 1 such terms are dropped as a conse- 
quence of the narrow vertex-angle approximation. 

These results for an arbitrary vertex angle may be com- 
pared with the asymptotic values for the case of vertex angle 
approaching zero given in reference 1. The present results 
for principal axes are found to differ from the asymptotic 
values (except for small terms in *12 and or) only in the 
acquisition of certain factors which in general are functions 
of BO. Thus f,,a, (', , and C,r of reference 1 are multiplied 

by E"{BO); Om is multiplied by G(BC); CLq is multiplied by 

H(BO); C, is multiplied by I (BO); C„ and CYJI are multiplied 

by 

I(BC)^-B2C2_ 
E'(BC) 

= J(BO) 

and O,/ and Cm- are multiplied by 
a a 

M*H(BO-E"{BC) 
M2-l 

The parameter BC=-, is the ratio of tangent of the semi- 

vertex angle of the triangle to the tangent of the Mach angle; 
.BC approaches zero, therefore, as the vertex angle approaches 
zero. The several functions E"(BC), . . . J(BC) all 
approach unity as BC approaches zero, and thus the 
derivatives obtained herein approach the asymptotic 
values of reference 1 as the vertex angle goes to zero. 

The variation of the stability derivatives with Mach 
number (except C,ia and Cm-a) is contained entirely in the 

factors   E"(BC), . . . J{BC)   and   an   additional   factor 

tan e 

The   six   factors   are plotted against 

BC-- tan M 
the ratio of the tangent of the semivertex angle 

to the tangent of the Mach angle, in figure 4. 
The derivatives apply to a wing of triangular plan form and 

zero thickness. The calculations are based on the assump- 
tion of potential flow with small disturbances, except in the 
case of the derivative C„r> in which skin friction is considered. 
The predicted infinite negative pressure acting on an edge of 
zero thickness to yield a finite suction force is, of course, a 
mathematical idealization. (The local violation of the 
assumption of small disturbances is not serious.) Subsonic 
experience indicates that with a suitably rounded edge a 
considerable leading-edge suction force may be realized in 
practice, with the theoretical value an upper limit. On the 
other hand, a sharp leading edge is known to cause loss of 
the leading-edge suction. The requirements of extreme 
thinness and a rounded leading edge (that is, appreciable 
radius of curvature) are evidently in conflict. Thus, the 
degree of applicability of the yawing-moment and lateral- 
force derivatives to actual triangular wings is uncertain.   A 
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'■-'ach line 

1.2   

1 
Qi.BC) 

1.0 

S 

10 C) \ 

rysc) \ 

ly.ff 

-^G(BC) 

.4 \ 

\jßc) 

^HfBCI      \ 

.4 1.0 

BC- 
tan e 
fan )j 

•'.lliplic inti'cral (autnrs of Uli' stability clrrivalivcs Ihat ilrliTtniiu' tlli'ir varialinn 
with Mach nlimhiT.    (See latilt; I.) 

further limitation on validity, already elaborated on in the 

section on C,n exists also for the derivatives with respect to 

yawing velocity. 'Flu- analysis neglects the spanwise varia- 

tion in Mach number caused by the yawing (but not the 

spanwise variation in velocity). The result is an error in the 
magnitude of the yawing' derivatives that is expected to 
vary from zero for W—0 to an important amount for /if"— 1. 

The potential </> satisfies the linearized equation of motion 
for the steady state but not the more general linearized 

equation for unsteady motion except for the case of normal 
acceleration (a). This circumstance implies that the present 
expressions for the stability derivatives are suitable only for 
steady motions, motions with small accelerations, or sinuous 

motions of low frequency. This limitation is accepted in all 

stability work and may become serious only in cases of high- 

frequency oscillations such as (hitter. 

LAXGLEY MEMORIAL AEROXALTICAL LABORATORY, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANG LEY FIELD, VA., November (>, 1UJ,7. 
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TABLE I.-STAHILITY   DERIVATIVES OF THIN TRIANGULAR WINGS AT SUPERSONIC SPEEDS 

Deriva- 
tive 

Source 
Principal body axes 

( origin nl ~c) 

(',, References 2 to 4 *:[AK"(liC) 

Stability axes' 
' ' 2 . 
oriirin at distance rrg ahead of ,, c point 

^-E"(BC) 

r'-i Present report  

<\ 
Reference 5 .   . -   —' 

c 
"■ 

References 2 to 4    

cm. a 
Present report  

Reference 5...   —   - 

ft» Reference 6    - 

c, Reference 5      

TAI<:"{BC)-\L
:
II(BC) 

'"2"   "'       .\P-\ 

rA E"(BC)-M2H(BC) 
" 2~ '     ~    \P-\ 

T~ II(BC) 

0 

TAE"(lJC)-M*IHliC) 
16 M2-l" 

--— G(BC) 

C, 

Cn. 

Present report . 

-E"{BC) 

32 
I(BC) 

<°(Sä+£)E"{BC) 

.do. 48 
<x2A2M*Q(BC) 

C .do :     -*a(<)A+tG)J(-IiC) 

i Term in C„0 derived \        Mß^lV 
i      in reference 1.        j    TocM2/ 1  . A . 9A3\n,nri. 

I   -~9~-\Ä
+

8
+

25G)
Q{BC) 

CYB        Present report. -ja2AM2Q(BC) 

^f1 ri(BC)+7rAxl" E"(BC) 

--^-TLe-E"{BC) 

rA 
16 iO+»t) 

xcl\E"(BC)-APII{BC) 
A/2-l 

-^ ff(BC) -~ ^* H(BC)-TA %ß E"{BC) 

-~E"(BC) 

-^ 7(7*7) +g^(l +8 ?i«) [£"(/?<?) - J(BC)] 

'-[(o+rg+Ä^)E"(ÄC)+55/(BC)]- 

3 V'(BC) +(^+^)M»G(AO 

-'-[(92+ri+o^)J(7W)-ä/(BC)]- 
a<?Do(ö + 9T2) 

-Tec :iiI(BU)-—Q     yA+s +256+     c + 

^?iJ-)<2(ZH7) 

-7 a2AAPQ(BC) 
4 

CV_ -™J(BC) ■ J{BC) 

<>rr .do. 24 aM2ilf2Q(5C) 
2jra 

3 
-[-J(7?c7)+(f6

2+^)M2(2(ß0] 

> In the transformation from body axes, terms of order «> have been neglected in comparison with unity, but terms of order aV A have been 
■etained since they may be appreciable for .small values of A. 
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Positive directions of axes and angles (forces and momenta) are shown by arrows 

Absolute coefficients of moment 

(rolling) (pitching) 

C, qbS 
(yawing) 

Angle of set of control surface   (relative  to  neutral 
position), 5.    (Indicate surface by proper subscript.) 

D Diameter 
p Geometric pitch 
p/D Pitch ratio 
V Inflow velocity 
V, Slipstream velocity 

T Thrust, absolute coefficient CT 

4. PROPELLER SYMBOLS 

P Power, absolute coefficient C,/'=;„ans 

C, Speed-power coefficient -7^ 

Q Q Torque, absolute coefficient Ca=—.:jy 

n 
Efficiency 
Revolutions per second, rps 

Effective helix angle = tan~M w  - J 

5. NUMERICAL RELATIONS 

1 hp = 76.04 kg-m/s = 550 ft-lb/sec 
1 metric horsepower=0.9863 hp 
1 mph=0.4470 mps 
1 mps=2.2369 mph 

1 lb=0.4536 kg 
1 kg=2.2046 lb 
1 mi= 1,609.35 m = 5,280 ft 
1 m=3.2808 ft 


